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Summary

A 4-storey steel framed model structure is described. In order to
demonstrate the stiffening effect of floors and walls, tests are reported
at three phases in the construction of the model:

(1) Steel frame without floors or infill walls
(2) Steel frame with floors in place but without infill walls
(3) Steel frame with floors and infill walls in place

At each phase, static tests were carried out in which horizontal
jateral load was applied at the floor levels. Results of the static tests
are used to predict natural frequencies of vibration and these are compared
with values found experimentally by means of sinusoidal and random
vibration tests.

(i) Graduate Research Student and (ii) Associate Professor in the
Civil Engineering Department of The University of Calgary.
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Introduction

In the analysis of structural frames for lateral loads such as arise
from earthquake or wind, the presence of non-load bearing infill walls is
often neglected. In fact such walls can have a significant effect on both
the static and dynamic structural response. Using structural models a
research program into the effect of infill walls is being carried out at
present at The University of Calgary. Preliminary work designed to demon-
strate the change in response resulting from the presence of infill walls
involved static and dynamic tests on a 4-storey steel model before and after
infill walls were placed.

(1)

Model Structure

The model described herein does not represent an existing real
structure. Rather a one-sixth scale model has been constructed of a
“reasonable" but rather idealized and simplified structure. The model is
that of a single-bay, 4-storey steel structure with concrete floors.
Figures 1 and 2 show the prototype structure and working drawings of the
steel framework for the model respectively. The beam and column I-sections
were milled from annealed steel and all joints were brazed using silver
solder. The possibility of welding the beam column connections was
investigated but in trial joints it was not possible to prevent holes being
burned in the thin webs of the sections. Since the fusion temperature of
silver solder is lower than the melting point of steel, this problem did
not exist when the joints were brazed. Moment-rotation tests of individual
joints showed that the brazed joints performed effectively even at large
rotations, local failure always occuring in the beam and column sections.
Rigid foundations were achieved by welding the bottom of the colummns to
heavy steel blocks (figure 3) which were bolted to the steel channels forming
the foundation.

The floors were cast from a sand-cement mortar and contained wire mesh
reinforcement. Shear connectors on the top flanges of all beams provided
continuity between beams and floors.

The infill walls were %" thick and were cast in situ using a mortar
with a sand-cement ratio of 5.2 and a water-cement ratio of 1.1. The
mortar had a dry density of 121 1bs./ft.3 and dynamic modulus testing of
12" cylinders gave a Young's Modulus of 1.95 x 106 p.s.i.

The formwork for the inside face of each wall consisted of a single
sheet of %" plywood cut to fit the rectangular area enclosed by the two
columns, the top beam and the concrete floor. The form for the outside
face of the wall was similar except that a gap about 1" deep was left
between the top of the form and the bottom flange of the beam. The two
forms were spaced with their inside faces 5" apart and were bolted together
in the steel frame of the model (figure 4). The mortar was gravity poured
through the gap in the form and tamped with lengths of flexible wire. All
eight walls in the model were cast at the same time and as the model was
sitting on a shake table during casting, it was possible to lightly vibrate
the whole structure. Finally the gap at the top of each wall was poured

(i) More detailed information on the model structure can be found in
Reference 1.
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and tamped, a strip of plywood being clamped on to cover the gap. (Some
difficulty was encountered in obtaining good contact between the top of
the wall and the lower flange of the beam. In subsequent walls, not
described in this paper, this contact was improved by the use of expansive
cement instead of ordinary Portland cement in the wall mortar.)

Description of Static Tests

Static lateral load tests were carried out at three phases in the
model development: (1) steel frame without floors or infill walls, (2)
steel frame with floors in place but without infill walls, and (3) steel
frame with floors and infill walls in place.

Figure 5 shows a general view of the test set up. The model was
rigidly bolted to the shake table and the table was fixed to prevent movement.
The magnitude of the applied lateral load was measured using a mechanical
force transducer. Dial gauges were used to measure deflection at both sides
of the structure in the direction of the applied load. The test procedure
was followed with the horizontal load being applied at each floor level
successively and separately.

The coordinate system of figure 6 is used in future discussion of
structural flexibility.

Static Test Results

Phase (1) Steel frame without floors or infill walls.

The load-deflection relationships obtained when the horizontal load
was applied at coordinate 3 are shown in figure 7. These curves are
approximately linear. Similar curves were obtained from tests with loads
applied at the other floor levels. The following flexibility matrix was
obtained for the complete three-dimensional model by measuring the slopes
of the static load deflection curves:

0.00166 0.00121 0.00088 0.00034
[£] - 0.00123 0.00104 0.00086 0.00034 itig . /1B
e1 0.00078 0.00076 0.00076 0.00034 : :

0.00035 0.00034 0.00034 0.00024

If the model is analysed as a two-dimensional linear elastic
(E = 30 x 10%p.s.i.) plane frame with axial deformations in the columns
being taken into account, small deformation theory of structures leads to
the following flexibility matrix:

0.00141 0.00106 0.00065 0.00026

[£] - |0.00106 0.00098 0.00064 0.00026
1 0.00065 0.00064 0.00057 0.00025
0.00026 0.00026 0.00025 0.00020

ins./1b.

As a consequence of Maxwell's Reciprocal Theorem, [£f]. is symmetrical. The
lack of symmetry observed in [f] is due to a combination of nonlinearities
in the structural behaviour and éxperimental error. Reasonable symmetry
exists in [f]e except in the third column and third row where the corre-
ponding elemehts differ by as much as 13 per cent. Since the elements of
each column of [f]e1 were derived from a single loading condition whereas

324



the elements of each row were derived from four different loading condi-
tions, it is more likely that the elements of a single column of the

matrix will be in error by a constant factor tha

n the elements of a single

row. If the third column of [f]el is multiplied by 0.89, then [f]el

becomes:

0.00166
0.00123
0.00078
0.00035

0.00121
0.00104
0.00076
0.00034

0.00078
0.00076
0.00068
0.00030

0.00034
0.00034
0.00034
0.00024

ins./1b. (A)

comes from

Further justification for the above modification to [f]el
consideration of the diagonal elements of [f]el and [f]Z'

(fii)el
If E is a vector such at (E,) = ——7yv then
1 (f11)1
1.22
_ 1.11
B} = 1.3
1.20

(E,) = 1.36 is considerably greater than the other elements, but if it is
muitiplied by 0.89 it becomes 1.21. This correlates better with the other
elements of {E}.

The final modified experimental flexibility matrix is made symmetrical
by averaging the appropriate elements of matrix (A):

0.00166 0.00122 0.00078 0.00035
[£] - 0.00122 0.00104 0.00076 0.00034 ins./1b
mel 0.00078 0.00076 0.00068 0.00032 ’ '
0.00035 0.00034 0.00032 0.00025

It is interesting to compare the experimentally derived flexibility
matric [f]mel with the theoretical matrix [f]1'

The model is seen to be more flexible than was theoretically predicted
from knowledge of the frame dimensions and section sizes. A discrepancy as
high as 26 per cent occurs in the elements of the first row and fourth
columns of the flexibility matrices. The largest error in the more important
diagonal terms is 17 per cent. Possibly some of the added flexibility was
contributed by local deformations in the brazed connections.

Phase (2) Steel frame with floors in place but without infill walls.

Static tests similar to those carried out at Phase (1) were performed
after floors had been cast in the model and masses added to the floors to
simulate dead load effects. Measurement of the slopes of the load deflec-
tion curves (figure 7) led to the following flexibility matrix:

0.00173 0.00113 0.000758 0.00019
[£] 0.00142 0.00104 0.000739 0.00018 P
e2 0.00087 0.00069 0.000578 0.00018 ' :
0.00039 0.00029 0.000234 0.00014

Critical examination of this flexibility matrix in a similar manner to that
described in Phase (1) led to the modified symmetrical experimental

325



flexibility matrix:

0.0015 0.0011 0.0007 0.0002
[£] - 0.0011 0.0010 0.0007 0.0002 $ivg T
me2 0.0007 0.0007 0.0006 0.0002 : :
0.0002 0.0002 0.0002 0.0002
Comparing this matrix with [f] it can be seen that, as expected,

the addition of floors to the modelmﬁés increased its stiffness by about
10 per cent. The beams acting in conjunction with the floors were stiff
compared to the columns and displacements at the floor levels therefore
resulted mainly from bending deformations in the columns. This is typical
of a "shear" type structure where the relative displacement between two
adjacent floors is dependent only on the shear between the two floors.

Phase (3) Steel frame with floors and infill walls.

Static load-deflection relationships at Phase 3 are shown in figure
8 for all four loading cases. The behaviour of the structure is similar
to that of a hardening spring. Each load-deflection curve can be approxi-
mated by two linear portions with a connecting curved portion.

It is interesting to compare the initial slopes of these curves with
those values obtained before the walls were present. Matrix [f]e3 is an
array of the initial slopes of the curves of figure 8.

0.00062 0.00042 0.00017 0.00010

[£] - 0.00050 0.00040 0.00018 0.00010
e3 0.00034 0.00029 0.00018 0.00009
0.00015 0.00014 0.00008 0.00008

ins./1lb.

Lack of symmetry in the elements of this matrix is more evident than in
[f]e2 (before the walls were placed). Comparison of [f]e3 and [f]me2

indicates that even the initial linear region of loading, and walls did
have considerable stiffening effect and the model flexibility was reduced
by more than 50 per cent as a result of the inclusion of the infill walls.
However in this region the bending stiffness of the frame still presents
an important contribution to the total stiffness.

The curved portion of the load-deflection curves represents the
transition to a stage where the walls are fully active structurally. By
limiting bending deformations in the columms, the walls cause the mode of
structural action to change from bending frame action to one where the walls
behave in a similar manner to diagonal compression struts. In doing so the
walls cause a major increase in the structural stiffness. Observation of,
say, the fourth floor deflections in figure 8 indicates that the structural
behaviour is now totally dissimilar to a simple "shear" structure. The
deflection is a function not only of the magnitude of the applied load but
also is significantly dependent on the location of the load.

A symmetrical flexibility matrix was obtained by averaging the
appropriate elements of [f]e3.

0.00062 0.00046 0.00025 0.00013
[£] _ | 0.00046 0.00040 0.00025 0.00012 dig. {15
me3 0.00025 0.00025 0.00018 0.00009 ) ’
0.00013 0.00012 0.00009 0.00008
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Natural Frequencies

1f [M] is the mass matrix of a structure, {D} the displacement rector
and [f] the flexibility matrix for the same coordinate system as {D}, then
the equation for free vibration of the structure is:

[£1(M]{D} = lwz (0} (1)

where ® is the radial frequemcy of free vibration.

For the present model the mass was assumed to be lumped equally at
all floor levels. The mass matrices at the various phases were:

11.85 0. 0. 0

B 0. 11.85 0. 0
Ml = 0. 0. 11.85 0. A

0 0. 0. 11.85

516. 0 0. 0

~ 0. 516. 0. 0
M], = 0. 0. 516. 0 1bs.

0. 0 0. 516

529. 0 0 0.

~ 0. 529. 0. 0.
Mly = 0. 0. 529. 0. L

0. 0. 0. 529.

The eigenvalue equation (1) was solved for the model at Phase (1)
using [M]1 and [f]mel’ at Phase (2) using [M]2 and [f]me2 and at Phase (3)
using [M], and [f] The theoretical natural frequencies obtained are
.73 me3.
shown in “Table I.

Tt must be pointed out that because of the lack of symmetry which
existed in [f] and the nonlinearities involved when the walls are
present in the "model, the analysis at Phase (3) is very approximate.

Dynamic Tests

The shake table 243 used to generate sinusoidal and random base motion
in the model is driven by an electrohydraulic closed-look system. Figure
9 shows a general view of the model (with walls in place)on the shake
table.

Sinusoidal Tests

Sinusoidal vibration tests were carried out in order to investigate
the natural frequencies of the model at Phases (1) and (2) of construction.
The output of an accelerometer located at the top floor of the model was
observed on an oscilloscope. Since peak accelerations occur at resonance,
it was possible to sweep slowly through various frequencies of sinusoidal
base motion and locate resonances in the structure. Table I shows the
natural frequencies {dentified in this manner. At Phase (1) of construction
it was possible to identify two natural frequencies within the operating
range of the shaker system. All four natural frequencies were identified
at Phase (2). Good correlation was found between predicted and measured

327



natural frequencies, the error being greater in the higher than in the
lower modes. Predictions at Phase (2) were better than at Phase (1). This
was to be expected since the lumped mass model was more realistic at Phase
(2) when there were large masses located at the floor levels. At Phase (1)
the columns between floor levels represented a more significant proportion
of the total mass of the model. It was possible that some deterioration

of the walls and change in their structural behaviour could occur during
dynamic testing. Thus, at Phase (3) sinusoidal tests were not performed,
the initial dynamic test being a random vibration test.

Random Vibration Tests

At Phases (2) and (3) of construction of the model, the shake table
was subjected to white noise acceleration. Strains at several locations
in the model were recorded. TFor present purposes, the output of a strain
gauge located as shown schematically in figure 6 shall be considered. A
Fourier Analyzer System (Hewlett-Packard Model 5450A) was used to auto-
matically obtain plots of power spectral density vs. frequency for the
strain signal.

Figure 10(a) shows the power spectrum obtained at Phase (2) of
construction of the model. The resonances occurring at frequencies corres-
ponding to the first three natural frequencies are obvious. The vertical
scale was multiplied by a factor of 100 (figure 10(b)) and it was then
possible to identify the fourth mode. It can be seen that the major
response was derived from the first mode and that the participation of each
mode to the total response decreased at the mode number increased. The
natural frequencies derived from figure 10 are recorded in Table I. The
values obtained from random tests are seen to be in all cases slightly less
than those obtained from the sinusoidal tests. The difference is very small
and is probably due to '"loosening" of the structure during the sinusoidal
tests causing a slight decrease in stiffness of the structure for the
subsequent random tests.

Figure 11 shows the power spectrum obtained at Phase (3), after the
walls had been placed. A limitation of this spectral analysis is that
strictly speaking it should be applied to a linear model. However it is
interesting to observe that significant responses occur in the range
0 +5 c.p.s. and there is an obvious resonance at 3.4 c.p.s. This appears
to be the fundamental mode, which has been raised from 2.4 c.p.s. due to
the stiffening effect of the walls. The theoretical value for the funda-
mental frequency at Phase (3) was 4.0 c.p.s., which compares favourably
with the measured resonance at 3.4 c.p.s. The approximate nature of the
theoretical analysis has already been pointed out. It is only considered
in order to illustrate that the increase in the fundamental frequency when
the walls are placed is of the same order as might be expected from consid-
erations of the increased stiffness of the structure in the initial linear
region of the static response curves.

The presence of the walls appears to have had the additional effect of
damping out participation of the higher modes.
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Conclusions

A 4-storey steel framed model structure has been described. Static
lateral load tests carried out at various stages in the construction of the
model have demonstrated the additional stiffness provided by floors and
infill walls.

Sinusoidal and random vibration tests carried out before the walls were
present proved that the static test results could be used to obtain good
prediction of natural frequencies, particularly in the lower modes. Random
vibration testing of the model with infill walls in place showed that
response was primarily in a fundamental mode at a frequency higher than the
fundamental frequency before the walls were present.
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Figure 3 Rigid Foundation

Figure 4 Formwork for Infill Wall
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Figure 5 Static Flexibility Test
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Figure 9 General View of Model on Shake Table
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DISCUSSION OF PAPER NO. 20

STRUCTURAL RESPONSE OF FRAMES CONTAINING INFILL WALLS

by

R.V. Dawson and M.A. Ward

Discussion by: Y.P. Gupta

The authors have carried out the load-deformation tests for the frame in
only one direction of loading while the dynamic loading is in both directioms.
The properties and hysteresis may be quite different. A reversed loading test
would give more realistic characteristics.

Reply by: R.V. Dawson

The model structure at Phases (1) and (2) of construction behaved
elastically so no hysteresis effects would be expected.

At Phase (3) of construction static cyclic load deformation tests would
provide additional information about the damping characteristics. However,
in the approximate analysis for natural frequencies damping has been neglected
and the slopes provided by the initial load tests would still be valid.

Question by: A.A. Mufti

Would you describe the characteristics of a link element between
rectangular elements representing wall and beam elements? How would you deter-
mine these characteristics?

Reply by: R.V. Dawson

The present paper is intended only to provide experimental demonstration
of the effects of infill walls. I have however mentioned that we are carrying
out a finite element analysis, so shall briefly describe the technique being
used.

The walls are divided into a mesh of rectangular elements (eg. A B C D)
with two translational degrees of freedom at each node.

The beams and columns are subdivided into frame elements (eg. E F and
E G) with two translational and ome rotational degree of freedom at each node.

Vertical link elements (eg BF) connect peripheral wall nodes to the

beams and horizontal link elements (eg GC) comnect peripheral wall nodes to
the columns.
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The wall is shown in Figure (A) to be separated from the frame. In fact
the coordinates of wall nodes and corresponding frame nodes are made identical
(eg A=E, G=C, F = B) and the link elements are considered to be pin jointed
struts of zero length, with element stiffness matrix of the form:

k -k

-k k

By using a large value for k (theoretically infinite) deflections in the

frame nodes and corresponding wall nodes can be made to coincide. The limi-
tation on the maximum value of k is that the equilibrium equations must be
sufficiently well-conditioned to solve. When load is applied to the structure
some link elements will act in tension and some in compression. No tension
bond is considered to be present between frame and wall so all tension links
are removed allowing separation to take place between frame and wall at these
nodes. The structural stiffness matrix is reassembled and load reapplied.

An iteration process ensues until only compression links remain to connect
the wall to the frame.

The introduction of the link element concept provides a useful device
for analysing interaction problem of frames with infill walls.

A_JQF_,

N, P

Figure(A): Typical Finite Element Mesh
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